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LEVER TO THE EDITOR 

On quantization of simple harmonic oscillators 

K Odakaf, T &hi and S Kamefuchi 
Institute of Physics, University of Tsukuha. lharaki 305, Japan 

Received 26 March 1991 

Abstract. A general framework is presented of quantizing the system of a simple harmonic 
oscillator. Various methods of quantization so far proposed are accommodated here in a 
unified form. Some remarks are also made an quantization for the case of more than one 
oscillator. 

After Wigner's 1950 paper [ l ]  a number of authors discussed the possibility of 
generalizing the canonical quantization method by referring, in particular, to the case 
of a simple harmonic oscillator [2-81. Very recently the problem has been revived from 
the viewpoint of quantum group, and various forms of q-deformation proposed [9-111. 
In  this letter we shall show that as far as the system of a single oscillator is concerned, 
the problem can be formulated in a simple but very general manner, so that all 
quantization methods so far proposed can be accommodated there in a unified form. 

The usual, canonical quantization fulfils a number of physical conditions, and when 
some of them are weakened or  lifted, various possibilities of generalization arise. Those 
conditions are to maintain: (i) the classical form of the equation of motion for the 
coordinate Q, i.e. G+ Q = 0 (in units such as m = w = A = 1); (ii) the classical form of 
the Hamiltonian H = (P2+ Q2)/2 with P being the momentum P =  6;  (iii) the energy 
spectrum of the form E. = Eo+ n with n = 0, 1,2, .  . . ; and (iv) the correspondence- 
theoretic limit for matrix elements of Q and P. Needless to say, condition (i) is to 
define the system, and condition (iii) to guarantee the energy-quanta interpretation. 
Now, for the sake of convenience let us first fix our terminology as follows. A method 
of quantization (or the resulting energy spectrum) is said to be Bowlike (Fermi-like) 
if there is no (an) upper bound nmax for n. The Bowlike case is called Wigner 
quarrrrLa,Lurr 1, c,) - U,, urur,rury pv3rrzvr rl"lrl"Fl L l , ,  annu p,ora.-"uJc q"'l"L''"L1V" I, 

Eo = pj2 with p = 1,2 , .  . . [ 12,131. Thus the canonical or Bose quantization corresponds 
to the special case with E , = ; .  For the Fermi-like case, on the other hand, we must 
have E,= -p/2 with p = 1,2 , .  . . ; here the general case is called para-Fermi quant- 
ization, and the special case with E , = - $  is called Fermi quantization [12,13]. The 
above conditions (i)-(iv) are all fulfilled for Wigner quantization, whereas (ii) and 

concerned with the possibility in which (ii) and (iv) are lifted. 

-..-... :--.:-.. :r c - "- _..I> ._^_. *., .-I...- r,, -..-I -"-" D^^^ ~ ..^_ *:--.:-.. :c 

(iv) a;e ;a: f;;!fi!!ed fc; pa;a-Fer--i q-aatizaticn. !E what fc!!nws *'e .ha!! maiE!y be 
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Let us now formulate our problem in terms of an algebraic system of three operators 
a, a t  and N = N ' ,  where a = ( Q + i P ) / d  and a ' = ( Q - i P ) / A a s  usual. For this 
algebraic system we then require: 

t (1) [ a , N ] = a  [ a  , N ] = - a t  

(11) N is given as 

N = N O ' ,  a l a )  (2) 

[at, a ] ,  = F - ' ( N ) =  G ( N )  (2') 

or 

where G is a real function, including the case of G =constant, and [A,  € 3 1 ,  = AB + aBA 
with real a # 0; and 

(111) the existence of at least one representation in which the spectrum of N is 
bounded below. Our algebraic system is thus specified by a and G. 

From (I) and (111) it immediately follows that N is of the spectrum N, = N,+n, 
where N. is the nth eigenvalue and n = 0, 1 , 2 , .  . . . In order to have the energy spectrum 
of the form as required by (iii) we have only to put H = hwN = N where Eo= No.  
The Heisenberg equations for Q and P then lead to the required equation of motion 
for Q, thereby fulfilling (i). In this case condition (ii) is not in general fulfilled, contrary 
to the case considered by some other authors [9,10]. Obviously a, a t  and N play the 
roles of annihilation, creation and number operators, respectively. 

Let us denote the nth eigenstate of N by lN,,)=ln) and assume that the ground 
state 10) is normalized and non-degenerate. From the 'commutation relation' (2')  it 
follows that 

a(af)"lO)= [ - m:o 1 ( -a)"-"G(m)]  (at)"-'lO) (3) 

where G ( m ) =  G ( N , )  and in particular G(O)= G ( N o ) .  By use of (3) it is then easy 
to show that any eigenstates with eigenvalue N. can eventually be rewritten as 
constant x (a')"lO). This implies that our state vector space i s  spanned by 1n)'s with 
each In) being non-degenerate. 

By taking the expectation values of both sides of (2') and by suitably choosing the 
phases of In) we obtain the matrix elements of a and at as follows: 

(n/aln+ 1 ) = ( n +  l I a + l n ) = m  (4) 

I ( n )  = lla'ln)112 = 1 (-l)"a-""+"G(n - m) 0. (5) 

and all other matrix elements =0, where 

"I-." 

Thus, the representation of our algebra i s  determined by fixing the parameter No that 
is contained in G ( n ) =  G ( N , ) .  

If I (  n )  > 0 for all n, the quantization in Bose-like. Further, if I ( n )  > 0 up to n = n'- 1 
and I ( n ' )  SO, we adjust the parameter No so that Z ( n ' ) = O  is realized; then I (n )  = O  
for all n > n'. In this case the spectrum of N terminates at n = nmsr = n', hence the 
quantization is Fermi-like. If neither of the above is the case, such sets of LI and G 
should be discarded. 

We now show that all known cases of quantization can be accommodated in our 
framework. 
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(a) Wigner quantization [ 1 1  (Bose-like, No' 0):  

f f= l  G( N )  = 2 N 

for n =even 
for n =odd. 

I ( n ) =  

As mentioned above, this includes Bose and para-Bose quantization as special cases 
[!2, E]. 

(b) Para-Fermi quantization [12,13] (Fermi-like, No= - p / 2 =  -Nmax with p = 
1,2 , .  . .): 

Here it is obvious that I ( n )  with No# - p / 2  is not permissible. Fermi quantization is 
the special case with p = 1. 

(c) q-deformed quantization (Biedenharn [ 9 ] )  (Bose-like, q > 0, No = real): 
a = -q-' G ( N ) =  - q - ( N + "  

I ( n )  = [ n  +I],q-No 

where [ X I , -  ( q x - q - r ) / ( q - q - ' ) .  

(d) q-deformed quantization (Macfarlane [ I O ] )  (Bose-like, q > 0, No = real): 

a = - 1  G ( N )  = [ N I , - [ N +  11, 

I ( n ) = [ n + l + N o ] , - [ N o ] , .  
( 9 )  

As is evident from (8) and ( 9 ) ,  cases (c) and (d) become equivalent only when 
No=O; this has often been overlooked in the literature. 

Fn!?her, it is not B diRiCU!! matter to invent new kinds of quantization; For  examp!e, 

(e) q-deformed Wigner quantization (Bose-like q > 0 ,  No>O): 

where { ~ } , ' ( q ~ + q - ~ ) / ( q + q - ' ) = [ f ] ~ ~ [ 2 ] , . .  The special case with N 0 = p / 2  ( p =  
1,2,. . .) may be regarded as q-deformed para-Bose quantization. We remark that our 
deformation is more general than that of Floreanini and Vinet ( [ I l l  and references 
therein) in that No is not restricted to p / 2  with p = 1,2,  . . . . 

(f)  q-deformed para-Fermi quantizalion (Fermi-like, No = - p / 2  = -Nmmx with p =  
1 , 2 , .  . .): 
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which agrees with the result of [ l l ] .  In this case it is also easy to see that No cannot 
take other values than those specified above. 

In all the above cases, excepting (a), the aforementioned conditions (ii) and (iv) 
are no longer fulfilled. Any of the q-deformed cases reduces, as q + 1, to the correspond- 
ing non-deformed case. It is also straightforward to show that the quantization by 
Greenberg [14], using an' -qa t ,  = 1 with -1  < q < 1, and the one by ORaifeartaigh 
ei ai [sj, using i<=,ia'a+paa' with ~ + p =  i ,  can simiiariy be discussed within our 
framework. Lastly let us point out a further possibility of deformation which may be 
called: 

( 9 )  'T-D cut-of deformation (Bose-like, q >  1 ,  N,=real): 

c ( h ~ l - - ~ - N  
- \ " I -  Y 

---" = -  Y 

+ l ) q - ( N O + " + l )  I ( n )  = ( 

What is of particular interest here is that I( n) + 0 as n + m, hence the contribution 
from large n is damped. That is to say, such a deformation plays the role of the 
so-called Tamm-Dancoff cut-off [15]. Incidentally, the present case resembles, in spirit, 
the idea of Saavedra who considered the possibiiiry OF modifying tne canonicai 
commutation relation at high energies [ 161. 

As may be easily checked, our operators a and a' for the general cases can be 
expressed in terms of the usual Bose operators b and b' as follows. Taking b and b' 
tobeoperatorssuchthat (nJb~n+1)=(n+l~bt jn )=~ ,a l lo thermatr ixe lements=O 
and hence Nhln)=nln) with N h - b f b = N - N o ,  we can write 

a = Ub a ' = b r U t  (13) 

where the No-dependent operator U is defined by 

In this connection we note parenthetically that In), the simultaneous eigenstate of N 
and Nb, can be expressed in two ways: 

In) = [ 1 ( 0 ) 1 ( 1 ) .  . . I ( n  - 1)]-1'2(~')"10)= ( n ! ) - " * ( b + ) " ~ O ) .  (14) 

The possibility of rewriting (13)  for the case of Wigner quantization was first noticed 
by Bou!ware and Deser [4J 

Most of the properties possessed by the usual oscillator can be generalized accord- 
ingly. For example, we can construct coherent states for the operators a and a'. 

So far we have been concerned with free oscillators. In the rest of this letter let us 
make a few remarks on interacting oscillators. First we consider the case of a single, 
self-interacting oscillator: the Hamiltonian of such a system is given as H = Hu+ Hi,,, 
where H G =  hoN = N as assumed before; and H.,:= Hiat(a: a'), For a and at l  of 
course, the Heisenherg equations of motion should hold. Now, in evaluating [a or 
a', HI we need the (anti)commutator [a, at]- unless Hi,,= Hin,(N). The required 
commutator is found, from (4), to he 

(15) [a ,  o * ] ~  = I( N ) F  I ( N  - 1) I J ' - ) (N) 
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with 

Thus, the Heisenberg equations take, in general, different forms than those of the 
(classical) Hamilton equations a = (J/Ja)H, etc. That is to say, in quantum theory 
some extra form factors J * ( N )  arise as a result of quantization. (Equivalently, the 

is made therein.) 
In order to deal with the case of more than one oscillator interacting with each 

other we have to know the 'commutation relations' among tthe operators aj, a: 
( j =  1,2, .  . . ,f), where aj and a]  are for the j th  oscillator. Obviously, the simplest, 
hut certainly mathematically consistent, way to proceed is to assume that for each 
individual oscillator the commutation relations remain the same as in the case off = 1,  
i.e. ( 1 )  and (2), whereas between different oscillators the corresponding operators 
simply commute or anticommute: 

(16) 

where j#  k and 4 = a j  or  a:. However, such a set of commutation relations has the 
following shortcoming. Except for cases (a) and (b) mentioned above, the formalism 
does not, in general, remain invariant under a change of variables ai + a: = Z k  cjxax : 
this is against the original spirit of the transformation theory of quantum mechanics. 
Thus, when applied, for example, to the field theory with local Lagrangian densities, 
the Heisenberg equations for field operators take, in general, non-local and highly 
nonlinear forms, and moreover the statistics of the field, which is  a consequence of 
field quantization, will no longer he a universal, hut merely a state-dependent property. 
We need therefore something more sophisticated than (16). 

In this respect it is instructive to recall the situation in para-quantization, i.e. cases 
(a) and (b). For f =  1 the operator N is defined by [a t ,  a ] -  =2N, where the upper 
(lower) sign corresponds to the para-Fermi (para-Bose) case. Now, it has been known 
for some time [13] that the last relation and relations (1) are precisely those of the 
Lie algebra so(3) (Lie superalgebra osp( l/Z)). And, to obtain the required commutation 
relations for the para-Fermi (para-Bose) case with f >  1 we have only to enlarge the 
above algebra [13] to s0(2f+ 1 )  (osp(l/Zf)). It is thus hoped that a similar systematic 
approach will be attempted for the case of 9- or more general deformations. 

fn-- Fn-tnrr r r  "..A r r t  _-..he :..+-->......A :..a- U ... hn- *La .-h-.rr- -F .,"- :*ht-- /<'l> 
1",,,, L.aL.L"I0 " ',,I" v ,,,'ay vc llll,"Y"CC" ,I,," A , [ " ,  I*l.C11 L l l C  C"P"&Z "1 "aII0L"IL.D ,I,, 

[ Zj, Z x I 9  = 0 
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